Step of Proof: absval_zero
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
absval
zero
:
1.
i
:
(if 0
z
i
then
i
else -
i
fi = 0)
(
i
= 0)
latex
by
InteriorProof
((((BoolCasesOnCExp 0
z
i
)
CollapseTHENM (AbReduce 0))
)
CollapseTHENA (
CollapseTHENA (
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t
CollapseTHENA (
) inil_term)))
latex
C
1
:
C1:
2. 0
i
C1:
(
i
= 0)
(
i
= 0)
C
2
:
C2:
2.
i
< 0
C2:
((-
i
) = 0)
(
i
= 0)
C
.
Definitions
T
,
P
Q
,
P
&
Q
,
P
Q
,
x
:
A
.
B
(
x
)
,
P
Q
,
True
,
ff
,
if
b
then
t
else
f
fi
,
,
tt
,
t
T
,
Unit
,
,
Lemmas
assert
of
lt
int
,
bnot
of
le
int
,
true
wf
,
squash
wf
,
eqff
to
assert
,
assert
of
le
int
,
eqtt
to
assert
,
iff
transitivity
,
bnot
wf
,
lt
int
wf
,
le
wf
,
assert
wf
,
bool
wf
,
le
int
wf
origin